Suggested Research
FOOD SCIENCE: THE APPLICATION AND USE OF ORGANIC BROCCOLI SPROUTS.*
Glucoraphanin & Sulforaphanes: Organic Broccoli Sprouts
Gu, Y., Guo, Q., Zhang, L., Chen, Z., Han, Y., & Gu, Z. (2011). Physiological and biochemical metabolism of germinating broccoli seeds and sprouts. Journal of agricultural and food chemistry, 60(1), 209-213. DOI: 10.1021/jf203599v
Egner, P. A., Chen, J. G., Wang, J. B., Wu, Y., Sun, Y., Lu, J. H., … & Jacobson, L. P. (2011). Bioavailability of sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer prevention research, 4(3), 384-395. Abstract
Hooper, L. V. (2011). You AhR what you eat: linking diet and immunity. Cell, 147(3), 489-491. Article
Housley, L., Magana, A. A., Hsu, A., Beaver, L. M., Wong, C. P., Stevens, J. F., … & Maier, C. S. (2018). Untargeted Metabolomic Screen Reveals Changes in Human Plasma Metabolite Profiles Following Consumption of Fresh Broccoli Sprouts. Molecular nutrition & food research, 1700665. https://doi.org/10.1002/mnfr.201700665
Shapiro, T. A., Fahey, J. W., Dinkova-Kostova, A. T., Holtzclaw, W. D., Stephenson, K. K., Wade, K. L., … & Talalay, P. (2006). Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutrition and cancer, 55(1), 53-62. https://doi.org/10.1207/s15327914nc5501_7
Sivapalan, T., Melchini, A., Saha, S., Needs, P. W., Traka, M. H., Tapp, H., … & Mithen, R. F. (2018). Bioavailability of Glucoraphanin and Sulforaphane from High‐Glucoraphanin Broccoli. Molecular nutrition & food research, 1700911. Article
Vanduchova, A., Anzenbacher, P., & Anzenbacherova, E. (2018). Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. Journal of medicinal food. https://doi.org/10.1089/jmf.2018.0024
Vermeulen, M., Klöpping-Ketelaars, I. W., van den Berg, R., & Vaes, W. H. (2008). Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli. Journal of agricultural and food chemistry, 56(22), 10505-10509. DOI:10.1021/jf801989e
West, L. G., Meyer, K. A., Balch, B. A., Rossi, F. J., Schultz, M. R., & Haas, G. W. (2004). Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. Journal of Agricultural and Food chemistry, 52(4), 916-926. DOI:10.1021/jf0307189
Liver Support, Phase I & II Detox, and Anti-carcinogenic Effect
Abbaoui, B., Riedl, K. M., Ralston, R. A., Thomas‐Ahner, J. M., Schwartz, S. J., Clinton, S. K., & Mortazavi, A. (2012). Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, metabolism, and interconversion. Molecular nutrition & food research, 56(11), 1675-1687. Abstract
Abdull Razis, A. F., Konsue, N., & Ioannides, C. (2018). Isothiocyanates and Xenobiotic Detoxification. Molecular nutrition & food research, 62(18), 1700916. https://doi.org/10.1002/mnfr.201700916
Abdull Razis AF, Noor NM. (2013). Cruciferous vegetables: dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev;14(3):1565-70. Article
Abdull Razis, A. F., Bagatta, M., De Nicola, G. R., Iori, R., Plant, N., & Ioannides, C. (2012). Characterization of the temporal induction of hepatic xenobiotic-metabolizing enzymes by glucosinolates and isothiocyanates: requirement for at least a 6 h exposure to elicit complete induction profile. Journal of agricultural and food chemistry, 60(22), 5556-5564. Abstract
Amjad, A. I., Parikh, R. A., Appleman, L. J., Hahm, E. R., Singh, K., & Singh, S. V. (2015). Broccoli-derived sulforaphane and chemoprevention of prostate cancer: from bench to bedside. Current pharmacology reports, 1(6), 382-390. Abstract
Armah, C. N., Traka, M. H., Dainty, J. R., Defernez, M., Janssens, A., Leung, W., … & Mithen, R. F. (2013). A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function–. The American journal of clinical nutrition, 98(3), 712-722. Article
Boivin, D., Lamy, S., Lord-Dufour, S., Jackson, J., Beaulieu, E., Côté, M., … & Béliveau, R. (2009). Antiproliferative and antioxidant activities of common vegetables: A comparative study. Food Chemistry, 112(2), 374-380. https://doi.org/10.1016/j.foodchem.2008.05.084
Brooks, J. D., Paton, V. G., & Vidanes, G. (2001). Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiology and Prevention Biomarkers, 10(9), 949-954. Abstract
Cheng, Y. M., Tsai, C. C., & Hsu, Y. C. (2016). Sulforaphane, a dietary isothiocyanate, induces G2/M arrest in cervical cancer cells through cyclinB1 downregulation and GADD45β/CDC2 association. International journal of molecular sciences, 17(9), 1530. Article
Choi, Y. H. (2018). ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells. General physiology and biophysics, 37(2), 129-140. Abstract
Clarke, J. D., Dashwood, R. H., & Ho, E. (2008). Multi-targeted prevention of cancer by sulforaphane. Cancer letters, 269(2), 291-304. https://doi.org/10.1016/j.canlet.2008.04.018
Dacosta, C., & Bao, Y. (2017). The role of microRNAs in the chemopreventive activity of sulforaphane from cruciferous vegetables. Nutrients, 9(8), 902. Article
Fahey, J. W., Zhang, Y., & Talalay, P. (1997). Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 94(19), 10367-10372. Article
Fimognari, C., & Hrelia, P. (2007). Sulforaphane as a promising molecule for fighting cancer. Mutation Research/Reviews in Mutation Research, 635(2-3), 90-104. https://doi.org/10.1016/j.mrrev.2006.10.004
Heiss, E., Herhaus, C., Klimo, K., Bartsch, H., & Gerhauser, C. (2001). Nuclear factor-κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. Journal of Biological Chemistry. Article
James, D., Devaraj, S., Bellur, P., Lakkanna, S., Vicini, J., & Boddupalli, S. (2012). Novel concepts of broccoli sulforaphanes and disease: induction of phase II antioxidant and detoxification enzymes by enhanced-glucoraphanin broccoli. Nutrition reviews, 70(11), 654-665. https://doi.org/10.1111/j.1753-4887.2012.00532.x
Jiang, X., Liu, Y., Ma, L., Ji, R., Qu, Y., Xin, Y., & Lv, G. (2018). Chemopreventive activity of sulforaphane. Drug design, development and therapy, 12, 2905. Article
Juengel, E., Euler, S., Maxeiner, S., Rutz, J., Justin, S., Roos, F., … & Blaheta, R. A. (2017). Sulforaphane as an adjunctive to everolimus counteracts everolimus resistance in renal cancer cell lines. Phytomedicine, 27, 1-7. https://doi.org/10.1016/j.phymed.2017.01.016
Juengel, E., Maxeiner, S., Rutz, J., Justin, S., Roos, F., Khoder, W., … & Blaheta, R. A. (2016). Sulforaphane inhibits proliferation and invasive activity of everolimus-resistant kidney cancer cells in vitro. Oncotarget, 7(51), 85208. Article
Juge, N., Mithen, R. F., & Traka, M. (2007). Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cellular and Molecular Life Sciences, 64(9), 1105. Abstract
Kensler, T. W., Egner, P. A., Agyeman, A. S., Visvanathan, K., Groopman, J. D., Chen, J. G., … & Talalay, P. (2012). Keap1–nrf2 signaling: a target for cancer prevention by sulforaphane. In Natural Products in Cancer Prevention and Therapy (pp. 163-177). Springer, Berlin, Heidelberg. Abstract
Kikuchi, M., Ushida, Y., Shiozawa, H., Umeda, R., Tsuruya, K., Aoki, Y., … & Nishizaki, Y. (2015). Sulforaphane-rich broccoli sprout extract improves hepatic abnormalities in male subjects. World journal of gastroenterology, 21(43), 12457. Article
Kwak, M. K., & Kensler, T. W. (2010). Targeting NRF2 signaling for cancer chemoprevention. Toxicology and applied pharmacology, 244(1), 66-76. https://doi.org/10.1016/j.taap.2009.08.028
Lenzi, M., Fimognari, C., & Hrelia, P. (2014). Sulforaphane as a promising molecule for fighting cancer. In Advances in Nutrition and Cancer (pp. 207-223). Springer, Berlin, Heidelberg. Abstract
Leone, A., Diorio, G., Sexton, W., Schell, M., Alexandrow, M., Fahey, J. W., & Kumar, N. B. (2017). Sulforaphane for the chemoprevention of bladder cancer: molecular mechanism targeted approach. Oncotarget, 8(21), 35412. Article
Li, S. H., Fu, J., Watkins, D. N., Srivastava, R. K., & Shankar, S. (2013). Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog–GLI pathway. Molecular and cellular biochemistry, 373(1-2), 217-227. Abstract
Li, Y., & Zhang, T. (2013). Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future oncology, 9(8), 1097-1103. Abstract
Li, Y., Zhang, T., Korkaya, H., Liu, S., Lee, H. F., Newman, B., … & Sun, D. (2010). Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research, 1078-0432. Article
Liu, B., Mao, Q., Lin, Y., Zhou, F., & Xie, L. (2013). The association of cruciferous vegetables intake and risk of bladder cancer: a meta-analysis. World journal of urology, 31(1), 127-133. Abstract
Liu, B., Mao, Q., Wang, X., Zhou, F., Luo, J., Wang, C., … & Xie, L. (2013). Cruciferous vegetables consumption and risk of renal cell carcinoma: a meta-analysis. Nutrition and cancer, 65(5), 668-676. https://doi.org/10.1080/01635581.2013.795980
Liu, P., Wang, W., Zhou, Z., Smith, A. J., Bowater, R. P., Wormstone, I. M., … & Bao, Y. (2018). Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells. Nutrients, 10(5). Article
Lozanovski, V. J., Houben, P., Hinz, U., Hackert, T., Herr, I., & Schemmer, P. (2014). Pilot study evaluating broccoli sprouts in advanced pancreatic cancer (POUDER trial)-study protocol for a randomized controlled trial. Trials, 15(1), 204. https://doi.org/10.1186/1745-6215-15-204
Mokhtari, R. B., Baluch, N., Homayouni, T. S., Morgatskaya, E., Kumar, S., Kazemi, P., & Yeger, H. (2018). The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review. Journal of cell communication and signaling, 12(1), 91-101. Abstract
Munday, R., & Munday, C. M. (2004). Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: comparison of allyl isothiocyanate with sulforaphane and related compounds. Journal of agricultural and food chemistry, 52(7), 1867-1871. Abstract
Myzak, M. C., & Dashwood, R. H. (2006). Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer letters, 233(2), 208-218. https://doi.org/10.1016/j.canlet.2005.02.033
Pawlik, A., Wiczk, A., Kaczyńska, A., Antosiewicz, J., & Herman-Antosiewicz, A. (2013). Sulforaphane inhibits growth of phenotypically different breast cancer cells. European journal of nutrition, 52(8), 1949-1958. DOI:10.1007/s00394-013-0499-5
Perocco, P., Bronzetti, G., Canistro, D., Valgimigli, L., Sapone, A., Affatato, A., … & Barillari, J. (2006). Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 595(1), 125-136. https://doi.org/10.1016/j.mrfmmm.2005.11.007
Ramirez, C. N., Li, W., Zhang, C., Wu, R., Su, S., Wang, C., … & Kong, A. N. T. (2018). In vitro-in vivo dose response of ursolic acid, sulforaphane, PEITC, and curcumin in cancer prevention. The AAPS journal, 20(1), 19. Abstract
Romagnolo, D. F., Davis, C. D., & Milner, J. A. (2012). Phytoalexins in cancer prevention. Frontiers in bioscience (Landmark edition), 17, 2035-2058. Abstract
Russo, M., Spagnuolo, C., Russo, G. L., Skalicka-Woźniak, K., Daglia, M., Sobarzo-Sánchez, E., … & Nabavi, S. M. (2018). Nrf2 targeting by sulforaphane: a potential therapy for cancer treatment. Critical reviews in food science and nutrition, 58(8), 1391-1405. https://doi.org/10.1080/10408398.2016.1259983
Sanlier, N., & Guler Saban, M. (2018). The Benefits of Brassica Vegetables on Human Health. J Human Health Res, 1, 104. Article
Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K. K., & Talalay, P. (2001). Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiology and Prevention Biomarkers, 10(5), 501-508. Abstract
Sharma, D., & Sangha, G. K. (2018). Antioxidative effects of aqueous extract of broccoli sprouts against Triazophos induced hepatic and renal toxicity in female Wistar rats. Journal of Applied Biomedicine, 16(2), 100-110. https://doi.org/10.1016/j.jab.2017.11.001
Schnekenburger, M., & Diederich, M. (2015). Nutritional epigenetic regulators in the field of cancer: new avenues for chemopreventive approaches. In Epigenetic Cancer Therapy (pp. 393-425). https://doi.org/10.1016/B978-0-12-800206-3.00018-5
Steinkellner, H., Rabot, S., Freywald, C., Nobis, E., Scharf, G., Chabicovsky, M., … & Kassie, F. (2001). Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 480, 285-297. Abstract
Su, X., Jiang, X., Meng, L., Dong, X., Shen, Y., & Xin, Y. (2018). Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2018. Abstract
Suresh, S., Waly, M. I., & Rahman, M. S. (2018). Broccoli (Brassica oleracea) as a Preventive Biomaterial for Cancer. In Bioactive Components, Diet and Medical Treatment in Cancer Prevention (pp. 75-87). Springer, Cham. Abstract
Tang, L., Zirpoli, G. R., Guru, K., Moysich, K. B., Zhang, Y., Ambrosone, C. B., & McCann, S. E. (2010). Intake of cruciferous vegetables modifies bladder cancer survival. Cancer Epidemiology and Prevention Biomarkers, 1055-9965. Article
Thangapandiyan, S., Ramesh, M., Miltonprabu, S., Hema, T., Nandhini, V., & Bavithrajothi, G. (2018). Protective Role of Sulforaphane against Multiorgan Toxicity in Rats: An In-vivo and In-vitro Review Study. Research & Reviews: A Journal of Toxicology, 8(1), 1-8. Article
Somczy, J., & Olejnik, A. (2010). [Sulforaphane—a possible agent in prevention and therapy of cancer]. Postepy Hig Med Dosw, 29(64), 590-603. [polish translation]. Abstract
Ushida, Y., Suganuma, H., & Yanaka, A. (2015). Low-dose of the sulforaphane precursor glucoraphanin as a dietary supplement induces chemoprotective enzymes in humans. Food and Nutrition Sciences, 6(17), 1603. Article
Veeranki, O. L., Bhattacharya, A., Tang, L., Marshall, J. R., & Zhang, Y. (2015). Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer. Current pharmacology reports, 1(4), 272-282. Abstract
Wang, D. X., Zou, Y. J., Zhuang, X. B., Chen, S. X., Lin, Y., Li, W. L., … & Lin, Z. Q. (2017). Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3β/β-catenin signaling pathways. Acta Pharmacologica Sinica, 38(2), 241. Article
Wiczk, A., Hofman, D., Konopa, G., & Herman-Antosiewicz, A. (2012). Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(8), 1295-1305. Article
Wiczk, A., Hofman, D., Konopa, G., & Herman-Antosiewicz, A. (2012). Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(8), 1295-1305. Article
Wu, Q. J., Yang, Y., Vogtmann, E., Wang, J., Han, L. H., Li, H. L., & Xiang, Y. B. (2012). Cruciferous vegetables intake and the risk of colorectal cancer: a meta-analysis of observational studies. Annals of oncology, 24(4), 1079-1087. https://doi.org/10.1093/annonc/mds601
Yanaka, A. (2018). Role of NRF2 in protection of the gastrointestinal tract against oxidative stress. Journal of Clinical Biochemistry and Nutrition, 17-139. DOI: https://doi.org/10.3164/jcbn.17-139
Zhang, Y., & Tang, L. (2007). Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta pharmacologica Sinica, 28(9), 1343-1354. Abstract
Zhang, Y., Kensler, T. W., Cho, C. G., Posner, G. H., & Talalay, P. (1994). Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proceedings of the National Academy of Sciences, 91(8), 3147-3150. Article
Zhang, Y., Talalay, P., Cho, C. G., & Posner, G. H. (1992). A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proceedings of the national academy of sciences, 89(6), 2399-2403. https://doi.org/10.1073/pnas.89.6.2399
Cardiovascular & Diabetes Support
Angeloni, C., Leoncini, E., Malaguti, M., Angelini, S., Hrelia, P., & Hrelia, S. (2009). Modulation of phase II enzymes by sulforaphane: implications for its cardioprotective potential. Journal of agricultural and food chemistry, 57(12), 5615-5622. Article
Bahadoran, Z., Mirmiran, P., Hosseinpanah, F., Hedayati, M., Hosseinpour-Niazi, S., & Azizi, F. (2011). Broccoli sprouts reduce oxidative stress in type 2 diabetes: a randomized double-blind clinical trial. European journal of clinical nutrition, 65(8), 972. Article
Bahadoran, Z., Tohidi, M., Nazeri, P., Mehran, M., Azizi, F., & Mirmiran, P. (2012). Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: a randomized double-blind clinical trial. International journal of food sciences and nutrition, 63(7), 767-771. Abstract
Bahadoran, Z., Tohidi, M., Nazeri, P., Mehran, M., Azizi, F., & Mirmiran, P. (2012). Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: a randomized double-blind clinical trial. International journal of food sciences and nutrition, 63(7), 767-771. https://doi.org/10.3109/09637486.2012.665043
Gray, S. G. (2018). The Potential of Epigenetic Compounds in Treating Diabetes. In Epigenetics in Human Disease (Second Edition) (pp. 489-547). https://doi.org/10.1016/B978-0-12-812215-0.00017-0
López-Chillón, M. T., Carazo-Díaz, C., Prieto-Merino, D., Zafrilla, P., Moreno, D. A., & Villaño, D. (2018). Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clinical Nutrition. Abstract
Mirmiran, P., Bahadoran, Z., Hosseinpanah, F., Keyzad, A., & Azizi, F. (2012). Effects of broccoli sprout with high sulforaphane concentration on inflammatory markers in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Journal of Functional Foods, 4(4), 837-841. Article
Zhang, X., Shu, X. O., Xiang, Y. B., Yang, G., Li, H., Gao, J., … & Zheng, W. (2011). Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality–. The American journal of clinical nutrition, 94(1), 240-246. DOI: 10.3945/ajcn.110.009340
Lung Health and Anti-Inflammatory
Egner, P. A., Chen, J. G., Zarth, A. T., Ng, D., Wang, J., Kensler, K. H., … & Fahey, J. W. (2014). Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer prevention research, canprevres-0103. Abstract
Heber, D., Li, Z., Garcia-Lloret, M., Wong, A. M., Lee, T. Y. A., Thames, G., … & Nel, A. (2014). Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food & function, 5(1), 35-41. Article
Jiang, Y., Wu, S. H., Shu, X. O., Xiang, Y. B., Ji, B. T., Milne, G. L., … & Yang, G. (2014). Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. Journal of the Academy of Nutrition and Dietetics, 114(5), 700-708. DOI:10.1016/j.jand.2013.12.019
Noah, T. L., Zhang, H., Zhou, H., Glista-Baker, E., Müller, L., Bauer, R. N., … & Robinette, C. (2014). Effect of broccoli sprouts on nasal response to live attenuated influenza virus in smokers: a randomized, double-blind study. PloS one, 9(6), e98671. Article
Park, J. H., Kim, J. W., Lee, C. M., Kim, Y. D., Chung, S. W., Jung, I. D., … & Seo, J. K. (2012). Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma. BMB reports, 45(5), 311-316. Abstract
Riedl, M. A., Saxon, A., & Diaz-Sanchez, D. (2009). Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clinical immunology, 130(3), 244-251. Abstract
Riso, P., Vendrame, S., Del Bo’, C., Martini, D., Martinetti, A., Seregni, E., … & Porrini, M. (2014). Effect of 10-day broccoli consumption on inflammatory status of young healthy smokers. International journal of food sciences and nutrition, 65(1), 106-111. DOI: 10.3109/09637486.2013.830084
Riso, P., Vendrame, S., Del Bo’, C., Martini, D., Martinetti, A., Seregni, E., … & Porrini, M. (2014). Effect of 10-day broccoli consumption on inflammatory status of young healthy smokers. International journal of food sciences and nutrition, 65(1), 106-111. DOI:10.3109/09637486.2013.830084
Ritz, S. A., Wan, J., & Diaz-Sanchez, D. (2007). Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract. American Journal of Physiology-Lung Cellular and Molecular Physiology, 292(1), L33-L39. Article
Wang, A. S., Xu, Y., Zhang, Z. W., Lu, B. B., Yin, X., Yao, A. J., … & Zhang, X. H. (2017). Sulforaphane protects MLE-12 lung epithelial cells against oxidative damage caused by ambient air particulate matter. Food & function, 8(12), 4555-4562. Abstract
Wu, X., Zhu, Y., Yan, H., Liu, B., Li, Y., Zhou, Q., & Xu, K. (2010). Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells. Bmc Cancer, 10(1), 269. https://doi.org/10.1186/1471-2407-10-269
Bowel Health & Antimicrobial Effect (H-pylori)
Fahey, J. W., Haristoy, X., Dolan, P. M., Kensler, T. W., Scholtus, I., Stephenson, K. K., … & Lozniewski, A. (2002). Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo [a] pyrene-induced stomach tumors. Proceedings of the National Academy of Sciences, 99(11), 7610-7615. https://doi.org/10.1073/pnas.112203099
Moon, J. K., Kim, J. R., Ahn, Y. J., & Shibamoto, T. (2010). Analysis and anti-Helicobacter activity of sulforaphane and related compounds present in broccoli (Brassica oleracea L.) sprouts. Journal of agricultural and food chemistry, 58(11), 6672-6677. Abstract
Troncoso-Rojas, R., & Tiznado-Hernández, M. E. (2014). Alternaria alternata (black rot, black spot). In Postharvest Decay (pp. 147-187). Abstract
Yanaka, A. (2018). Daily intake of broccoli sprouts normalizes bowel habits in human healthy subjects. Journal of clinical biochemistry and nutrition, 62(1), 75-82. DOI: https://doi.org/10.3164/jcbn.17-42
Yanaka, A. (2017). Role of Sulforaphane in Protection of Gastrointestinal Tract Against H. pylori and NSAID-Induced Oxidative Stress. Current pharmaceutical design, 23(27), 4066-4075. Article
Yanaka, A. (2011). Sulforaphane enhances protection and repair of gastric mucosa against oxidative stress in vitro, and demonstrates anti-inflammatory effects on Helicobacter pyloriinfected gastric mucosae in mice and human subjects. Current pharmaceutical design, 17(16), 1532-1540. DOI: https://doi.org/10.2174/138161211796196945
Yanaka, A., Fahey, J. W., Fukumoto, A., Nakayama, M., Inoue, S., Zhang, S., … & Yamamoto, M. (2009). Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori–infected mice and humans. Cancer Prevention Research, 2(4), 353-360. Abstract
Brain Health: Alzheimer’s and Autism Support
Kim, H. V., Kim, H. Y., Ehrlich, H. Y., Choi, S. Y., Kim, D. J., & Kim, Y. (2013). Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid, 20(1), 7-12.
Sedlak, T. W., Nucifora, L. G., Koga, M., Shaffer, L. S., Higgs, C., Tanaka, T., … & Sawa, A. (2017). Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Molecular neuropsychiatry, 3(4), 214-222. https://www.karger.com/Article/Abstract/487639
Singh, K., Connors, S. L., Macklin, E. A., Smith, K. D., Fahey, J. W., Talalay, P., & Zimmerman, A. W. (2014). Sulforaphane treatment of autism spectrum disorder (ASD). Proceedings of the National Academy of Sciences, 111(43), 15550-15555. DOI: 10.1073/pnas.1416940111
Reviews
There are no reviews yet.