Suggested Research
Below are clinical study & supporting research source citations:
Aguilar, C., Mano, M., & Eulalio, A. (2018). MicroRNAs at the Host–Bacteria Interface: Host Defense or Bacterial Offense. Trends in microbiology. Abstract
Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdova, A. F., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105-114. Abstract
Albarracin, L., Kobayashi, H., Iida, H., Sato, N., Nochi, T., Aso, H., … & Villena, J. (2017). Transcriptomic analysis of the innate antiviral immune response in porcine intestinal epithelial cells: influence of immunobiotic lactobacilli. Frontiers in immunology, 8, 57. Article
Amalaradjou, M.A., & Bhunia, A.K. (2012). Modern approaches in probiotics research to control foodborne pathogens. Adv. Food Nutr. Res, 67, 185–239. https://doi.org/10.1016/B978-0-12-394598-3.00005-8
Anzaku, A. A., & Pedro, A. (2017). Antimicrobial Effect of Probiotic Lactobacilli on Candida Spp. Isolated from Oral Thrush of AIDS Defining Ill Patients. J Prob Health, 5(171), 2. Article
Arena, M. P., Capozzi, V., Russo, P., Drider, D., Spano, G., & Fiocco, D. (2018). Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Applied microbiology and biotechnology, 102(23), 9949-9958. Abstract
Beserra, B. T., Fernandes, R., do Rosario, V. A., Mocellin, M. C., Kuntz, M. G., & Trindade, E. B. (2015). A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clinical nutrition, 34(5), 845-858. Abstract
Bhat, M. I., & Kapila, R. (2017). Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutrition reviews, 75(5), 374-389. https://doi.org/10.1093/nutrit/nux001
Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., … & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 117(1), 93-107. Abstract
Buford, T. W. (2017). (Dis) Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome, 5(1), 80. https://doi.org/10.1186/s40168-017-0296-0
Canfora, E. E., Jocken, J. W., & Blaak, E. E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology, 11(10), 577. Abstract
Cani PD, Delzenne NM. (2011).The gut microbiome as therapeutic target. Pharmacol Ther, 130(2), 202-12.DOI: 10.1016/j.pharmthera.2011.01.012
Cani, P.D., Pssemiers, S., Van de Wiele, T., Guiot, Y., Everad, A., Rottier, O…. Delzenne, N.M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. Gut, 58(8), 1091-1103. DOI:10.1136/gut.2008.165886
Caprara, G. (2018). Diet and longevity: The effects of traditional eating habits on human lifespan extension. Mediterranean Journal of Nutrition and Metabolism, (Preprint), 1-34. Abstract
Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuño, M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of nutritional biochemistry, 24(8), 1415-1422. Article
Carvalho, R. D., do Carmo, F. L., de Oliveira Junior, A., Langella, P., Chatel, J. M., Bermúdez-Humarán, L. G., … & de Azevedo, M. S. (2017). Use of wild type or recombinant lactic acid bacteria as an alternative treatment for gastrointestinal inflammatory diseases: a focus on inflammatory bowel diseases and mucositis. Frontiers in microbiology, 8, 800. Article
Cerdó, T., García-Santos, J. A., G Bermúdez, M., & Campoy, C. (2019). The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients, 11(3), 635. Abstract
Chenoll, E., Casinos, B., Bataller, E., Astals, P., Echevarría, J., Iglesias, J. R., … & Genovés, S. (2011). Novel probiotic Bifidobacterium bifidum CECT 7366 strain active against the pathogenic bacterium Helicobacter pylori. Applied and environmental microbiology, 77(4), 1335-1343. DOI: 10.1128/AEM.0182-10
Choudhury, T. G., & Kamilya, D. (2018). Paraprobiotics: an aquaculture perspective. Reviews in Aquaculture. Abstract
Cianci, R., Franza, L., Schinzari, G., Rossi, E., Ianiro, G., Tortora, G., … & Cammarota, G. (2019). The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. International journal of molecular sciences, 20(3), 501. Abstract
Collins, S., & Reid, G. (2016). Distant site effects of ingested prebiotics. Nutrients, 8(9), 523. Article
Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J., & Relman, D. A. (2012). The application of ecological theory toward an understanding of the human microbiome. Science, 336(6086), 1255-1262. Abstract
Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95. Abstract
Cotter, P. D., Hill, C., & Ross, R. P. (2005). Food microbiology: bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777. Abstract
Dahiya, D. K., Puniya, M., Shandilya, U. K., Dhewa, T., Kumar, N., Kumar, S., … & Shukla, P. (2017). Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Frontiers in microbiology, 8, 563. Article
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., … & Biddinger, S. B. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559. Abstract
Desmond, M. A., Sobiecki, J., Fewtrell, M., & Wells, J. C. (2018). Plant-based diets for children as a means of improving adult cardiometabolic health. Nutrition reviews, 76(4), 260-273. https://doi.org/10.1093/nutrit/nux079
Dimidi, E., Christodoulides, S., Fragkos, K. C., Scott, S. M., & Whelan, K. (2014). The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials–. The American journal of clinical nutrition, 100(4), 1075-1084. https://doi.org/10.3945/ajcn.114.089151
Ditu, L.M., Chifiriuc, M.C., Bezirtzoglou, E., Marutescu, L., Bleotu, C., Pelinescu, D., Mihaescu, G., Lazar, V. (2014). Immunomodulatory effect of non-viable components of probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus on holoxenic mice. Microb Ecol Health Dis, 25. Abstract
Erridge, C., Attina, T., Spickett, C. M., & Webb, D. J. (2007). A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. The American journal of clinical nutrition, 86(5), 1286-1292. Article
Eskesen, D., Jespersen, L., Michelsen, B., Whorwell, P. J., Müller-Lissner, S., & Morberg, C. M. (2015). Effect of the probiotic strain Bifidobacterium animalis subsp. lactis, BB-12®, on defecation frequency in healthy subjects with low defecation frequency and abdominal discomfort: a randomised, double-blind, placebo-controlled, parallel-group trial. British Journal of Nutrition, 114(10), 1638-1646.https://doi.org/10.1017/S0007114515003347
Etxeberria, U., Fernández-Quintela, A., Milagro, F. I., Aguirre, L., Martínez, J. A., & Portillo, M. P. (2013). Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. Journal of agricultural and food chemistry, 61(40), 9517-9533. Article
Everard, A., & Cani, P. (2013). Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol, 27, 73–83. doi: 10.1016/j.bpg.2013.03.007.
Francavilla, R., De Angelis, M., Rizzello, C. G., Cavallo, N., Dal Bello, F., & Gobbetti, M. (2017). Selected Probiotic Lactobacilli Have the Capacity to Hydrolyze Gluten Peptides During Simulated Gastro-Intestinal Digestion. Applied and environmental microbiology, AEM-00376. Abstract
Fuller, R. (1989). Probiotics in man and animals. Journal of applied bacteriology, 66(5), 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
Fuller, R. (1992). The effect of probiotics on the gut micro-ecology of farm animals. The lactic acid bacteria in health and disease, Volume 1, pp. 171-192. Springer Book: Boston, MA.
Gibson, G. R., Scott, K. P., Rastall, R. A., Tuohy, K. M., Hotchkiss, A., Dubert-Ferrandon, A., … & Macfarlane, S. (2010). Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods, 7(1), 1-19. Article
Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A., & Roberfroid, M. B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition research reviews, 17(2), 259-275. https://doi.org/10.1079/NRR200479
Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition, 125(6), 1401-1412. https://doi.org/10.1093/jn/125.6.1401
Gibson, G., Willis, C. L., & Van Loo, J. (1994). Non digestible oligosaccharides and bifidobacteria: Implications for health. International Sugar Journal, (96), 381-387.
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., … & Verbeke, K. (2017). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol, 14(8), 491-502. Article
Gilbert, J. A., Blaser, M. J., Caporaso, J. G., Jansson, J. K., Lynch, S. V., & Knight, R. (2018). Current understanding of the human microbiome. Nature medicine, 24(4), 392. Article
Goldenberg, J. Z., Ma, S. S., Saxton, J. D., Martzen, M. R., Vandvik, P. O., Thorlund, K., … & Johnston, B. C. (2013). Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children. Cochrane Database of Systematic Reviews, (5). Abstract
Gomez, A., Petrzelkova, K. J., Burns, M. B., Yeoman, C. J., Amato, K. R., Vlckova, K., … & Torralba, M. G. (2016). Gut microbiome of coexisting BaAka Pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell reports, 14(9), 2142-2153. Article
Górska, S., Dylus, E., Rudawska, A., Brzozowska, E., Srutkova, D., Schwarzer, M., … & Gamian, A. (2016). Immunoreactive proteins of Bifidobacterium longum ssp. longum CCM 7952 and Bifidobacterium longum ssp. longum CCDM 372 Identified by gnotobiotic mono-colonized mice sera, immune rabbit sera and non-immune human sera. Frontiers in microbiology, 7, 1537. Article
He, X., Zeng, Q., Puthiyakunnon, S., Zeng, Z., Yang, W., Qiu, J… Cao H…(2017). Lactobacillus rhamnosus GG [ATCC 53103] supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense. Sci Rep, 7, 43305. Article
Heydari, Z., Rahaie, M., Alizadeh, A. M., Agah, S., Khalighfard, S., & Bahmani, S. (2018). Effects of Lactobacillus acidophilus and Bifidobacterium bifidum Probiotics on the Expression of MicroRNAs 135b, 26b, 18a and 155, and Their Involving Genes in Mice Colon Cancer. Probiotics and antimicrobial proteins, 1-8. Abstract
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., … & Calder, P. C. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol, 11(8), 506-514. Article
Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172-184. Abstract
Holscher, H. D., Caporaso, J. G., Hooda, S., Brulc, J. M., Fahey Jr, G. C., & Swanson, K. S. (2014). Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial–. The American journal of clinical nutrition, 101(1), 55-64. Article
Howarth, G., & Wang, H. (2013). Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients, 5(1), 58-81. DOI:10.3390/nu5010058
Johnston, B. C., Ma, S. S., Goldenberg, J. Z., Thorlund, K., Vandvik, P. O., Loeb, M., & Guyatt, G. H. (2012). Probiotics for the prevention of Clostridium difficile–associated diarrhea: a systematic review and meta-analysis. Annals of internal medicine, 157(12), 878-888. Article
Kawahara, T., Takahashi, T., Oishi, K., Tanaka, H., Masuda, M., Takahashi, S., … & Suzuki, T. (2015). Consecutive oral administration of Bifidobacterium longum MM‐2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiology and immunology, 59(1), 1-12. Article
Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition, 2013. Articl
Kikuchi, Y., Kunitoh-Asari, A., Hayakawa, K., Imai, S., Kasuya, K., Abe, K., … & Hachimura, S. (2014). Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice. PloS one, 9(1), e86416. Article
Kristensen, N. B., Syrup, T., Allin, K. H., Nielsen, T., Hansen, T. H., & Pedersen, O. (2016). Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome medicine, 8(1), 52. https://doi.org/10.1186/s13073-016-0300-5
Kobyliak, N., Conte, C., Cammarota, G., Haley, A. P., Styriak, I., Gaspar, L., … & Kruzliak, P. (2016). Probiotics in prevention and treatment of obesity: a critical view. Nutrition & metabolism, 13(1), 14. Article
Langdon, A., Crook, N., & Dantas, G. (2016). The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome medicine, 8(1), 39. Article
Lazar, V., Miyazaki, Y., Hanawa, T., Chifiriuc, M. C., Ditu, L. M., Marutescu, L., … & Kamiya, S. (2009). The influence of some probiotic supernatants on the growth and virulence features expression of several selected enteroaggregative E. coli clinical strains. Roum Arch Microbiol Immunol, 68(4), 207-214. Article
Lederberg, J., & McCray, A. T. (2001). Ome SweetOmics–A Genealogical Treasury of Words. The Scientist, 15(7), 8-8. Article
Leite, A. Z., Rodrigues, N. D. C., Gonzaga, M. I., Paiolo, J. C. C., de Souza, C. A., Stefanutto, N. A. V., … & Mariano, V. S. (2017). Detection of increased plasma interleukin-6 levels and prevalence of Prevotella copri and Bacteroides vulgatus in the feces of type 2 diabetes patients. Frontiers in immunology, 8, 1107. Article
Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., … & Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science, 308(5721), 557-560. Abstract
Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: human gut microbes associated with obesity. nature, 444(7122), 1022. Article
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147(3659), 747-748. https://doi.org/10.1126/science.147.3659.747
Macfarlane, S. M. G. T., Macfarlane, G. T., & Cummings, J. T. (2006). Prebiotics in the gastrointestinal tract. Alimentary pharmacology & therapeutics, 24(5), 701-714. https://doi.org/10.1111/j.1365-2036.2006.03042.x
Manichanh, C., Borruel, N., Casellas, F., & Guarner, F. (2012). The gut microbiota in IBD. Nature reviews Gastroenterology & hepatology, 9(10), 599. Abstract
Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021. Article
Marshall, W. E. (2010). Oligoribonucleotides alert the immune system of animals to the imminence of microbial infection. U.S. Patent No. 7,678,557. Washington, DC: U.S. Patent and Trademark Office. Article
Matthews, C., Crispie, F., Lewis, E., Reid, M., O’Toole, P. W., & Cotter, P. D. (2018). The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut microbes, 1-18. Abstract
Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., … & Yadav, H. (2018). Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and healthy aging, 4(4), 267-285. Article
Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms, 4(3), 34. Abstract
O’Connor, P. M., O’Shea, E. F., Cotter, P. D., Hill, C., & Ross, R. P. (2018). The potency of the broad spectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Scientific reports, 8(1), 11833. Article
Obregon-Tito, A. J., Tito, R. Y., Metcalf, J., Sankaranarayanan, K., Clemente, J. C., Ursell, L. K., … & Spicer, P. (2015). Subsistence strategies in traditional societies distinguish gut microbiomes. Nature communications, 6, 6505. Article
Parker, R. B. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health, 29, 4-8.
Oozeer, R., van Limpt, K., Ludwig, T., Ben Amor, K., Martin, R., Wind, R. D., … & Knol, J. (2013). Intestinal microbiology in early life: specific prebiotics can have similar functionalities as human-milk oligosaccharides. The American journal of clinical nutrition, 98(2), 561S-571S. Article
Pathak, S., Kesavan, P., Banerjee, A., Banerjee, A., Celep, G. S., Bissi, L., & Marotta, F. (2018). Metabolism of Dietary Polyphenols by Human Gut Microbiota and Their Health Benefits. In Polyphenols: Mechanisms of Action in Human Health and Disease (pp. 347-359). Academic Press. Abstract
Parker, R. B. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health, 29, 4-8.
Pärtty, A., Kalliomäki, M., Endo, A., Salminen, S., & Isolauri, E. (2012). Compositional development of Bifidobacterium and Lactobacillus microbiota is linked with crying and fussing in early infancy. PloS one, 7(3), e32495. https://doi.org/10.1371/journal.pone.0032495
Patil, D. P., Dhotre, D. P., Chavan, S. G., Sultan, A., Jain, D. S., Lanjekar, V. B., … & RanadeD. R. (2012). Molecular analysis of gut microbiota in obesity among Indian individuals. Journal of biosciences, 37(4), 647-657. Abstrac
Pérez-Jaramillo, J. E., Mendes, R., & Raaijmakers, J. M. (2016). Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant molecular biology, 90(6), 635-644. Article
Reid, G., & Burton, J. (2002). Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes and infection, 4(3), 319-324. https://doi.org/10.1016/S1286-4579(02)01544-7
Rhoads, J. M., Collins, J., Fatheree, N. Y., Hashmi, S. S., Taylor, C. M., Luo, M., … & Liu, Y. (2018). Infant Colic Represents Gut Inflammation and Dysbiosis. The Journal of pediatrics. https://doi.org/10.1016/j.jpeds.2018.07.042
Roberfroid, M. B. (2002). Functional foods: concepts and application to inulin and oligofructose. British Journal of Nutrition, 87(S2), S139-S143. https://doi.org/10.1079/BJN/2002529
Rosenfeld, Y., & Shai, Y. (2006). Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(9), 1513-1522. Article
Salas-Jara, M. J., Ilabaca, A., Vega, M., & García, A. (2016). Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms, 4(3), 35. doi:10.3390/microorganisms4030035
Sanders, M. E., Merenstein, D., Merrifield, C. A., & Hutkins, R. (2018). Probiotics for human use. Nutrition Bulletin, 43(3), 212-225. https://doi.org/10.1111/nbu.12334
Sanders, M. E. (2016). Probiotics and microbiota composition. BMC medicine, 14(1), 82. Article
Sanders, M. E. (2011). Impact of probiotics on colonizing microbiota of the gut. Journal of clinical gastroenterology, 45, S115-S119. Abstract
Sanders, M. E., Heimbach, J. T., Pot, B., Tancredi, D. J., Lenoir-Wijnkoop, I., Lähteenmäki-Uutela, A., … & Bañares, S. (2011). Health claims substantiation for probiotic and prebiotic products. https://doi.org/10.4161/gmic.2.3.16174
Sanz, Y., Nadal, I., & Sánchez, E. (2007). Probiotics as drugs against human gastrointestinal infections. Recent patents on anti-infective drug discovery, 2(2), 148-156.
Sanzik, Y., Nadal, I., & Sanchez, E. (2011). Probiotics as drugs against human gastrointestinal Pathogens. Frontiers in Anti-Infective Drug Discovery, 1, 107.
Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annual Reviews in Microbiology, 31(1), 107-133. Introduction
Savilahti, E. (2011). Probiotics in the treatment and prevention of allergies in children. Bioscience and microflora, 30(4), 119-128.
Schnorr, S. L., Sankaranarayanan, K., Lewis Jr, C. M., & Warinner, C. (2016). Insights into human evolution from ancient and contemporary microbiome studies. Current opinion in genetics & development, 41, 14-26. Article
Schnorr, S. L., Candela, M., Rampelli, S., Centanni, M., Consolandi, C., Basaglia, G., … & Fiori, J. (2014). Gut microbiome of the Hadza hunter-gatherers. Nature communications, 5, 3654. Article
Singh, R. K., Chang, H. W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., … & Bhutani, T. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of translational medicine, 15(1), 73. Abstract
Stanaway, I. B., Wallace, J. C.,hojaie, A., Griffith, W. C., Hong, S., Wilder, C. S., … & Vigoren, E. M. (2017). Human oral buccal microbiomes are associated with farmworker status and azinphos-methyl agricultural pesticide exposure. Applied and environmental microbiology, 83(2), e02149-16. Abstract
Sunkavalli, U., Aguilar, C., Silva, R. J., Sharan, M., Cruz, A. R., Tawk, C., … & Eulalio, A. (2017). Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS pathogens, 13(4), e1006327. Abstract
Raetz, C. R., & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual review of biochemistry, 71(1), 635-700. Article
Rajashekharan, S., Krishnaswamy, B., & Kammara, R. (2017). Bifid shape is intrinsic to Bifidobacterium adolescentis. Frontiers in microbiology, 8, 478. Article
Razmpoosh, E., Javadi, A., Ejtahed, H. S., Mirmiran, P., Javadi, M., & Yousefinejad, A. (2019). The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo controlled trial. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(1), 175-182. Article
Roca-Saavedra, P., Mendez-Vilabrille, V., Miranda, J. M., Nebot, C., Cardelle-Cobas, A., Franco, C. M., & Cepeda, A. (2017). Food additives, contaminants and other minor components: effects on human gut microbiota—a review. Journal of physiology and biochemistry, 1-15. Abstract
Tedelind, S., Westberg, F., Kjerrulf, M., & Vidal, A. (2007). Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World journal of gastroenterology: WJG, 13(20), 2826. Article
Tufarelli, V., & Laudadio, V. (2016).
Product Brochure:
Research:
FOOD SCIENCE: THE APPLICATION AND USE OF PROBIOTICS WITH THEIR SUPERNATANT AND ORNS: L. ACIDOPHILUSB. LONGUM, L. CASEI, L. BULGARICUS, STEPTOCOCCUS THERMOPHILUS, WITH INULIN PREBIOTIC FIBER.
Antimicrobial Properties
Albarracin, L., Kobayashi, H., Iida, H., Sato, N., Nochi, T., Aso, H., … & Villena, J. (2017). Transcriptomic analysis of the innate antiviral immune response in porcine intestinal epithelial cells: influence of immunobiotic lactobacilli. Frontiers in immunology, 8, 57. Article
Amalaradjou, M. A. R., & Bhunia, A. K. (2012). Modern approaches in probiotics research to control foodborne pathogens. In Advances in food and nutrition research (Vol. 67, pp. 185-239). Academic Press. Abstract
Arena, M. P., Capozzi, V., Russo, P., Drider, D., Spano, G., & Fiocco, D. (2018). Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Applied microbiology and biotechnology, 102(23), 9949-9958. Abstract
Bailey, J. R., Vince, V., Williams, N. A., & Cogan, T. A. (2017). Streptococcus thermophilus NCIMB 41856 ameliorates signs of colitis in an animal model of inflammatory bowel disease. Beneficial microbes, 8(4), 605-614.https://doi.org/10.3920/BM2016.0110
Bhat, M. I., Kumari, A., Kapila, S., & Kapila, R. (2019). Probiotic lactobacilli mediated changes in global epigenetic signatures of human intestinal epithelial cells during Escherichia coli challenge. Annals of Microbiology, 1-10. Abstract
Bhat, M. I., & Kapila, R. (2017). Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutrition reviews, 75(5), 374-389. https://doi.org/10.1093/nutrit/nux001
Burton, J. P., Chanyi, R. M., & Schultz, M. (2017). Common Organisms and Probiotics: Streptococcus thermophilus (Streptococcus salivarius subsp. thermophilus). In The Microbiota in Gastrointestinal Pathophysiology (pp. 165-169). https://doi.org/10.1016/B978-0-12-804024-9.00019-7
Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins—a viable alternative to antibiotics?. Nature Reviews Microbiology, 11(2), 95. Abstract
Cotter, P. D., Hill, C., & Ross, R. P. (2005). Food microbiology: bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777. Abstract
Ditu, L.M., Chifiriuc, M.C., Bezirtzoglou, E., Marutescu, L., Bleotu, C., Pelinescu, D., Mihaescu, G., Lazar, V. (2014). Immunomodulatory effect of non-viable components of probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus on holoxenic mice. Microb Ecol Health Dis, 25. Abstract
Gong, J., Bai, T., Zhang, L., Qian, W., Song, J., & Hou, X. (2017). Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro. PloS one, 12(12), e0189257. https://doi.org/10.1371/journal.pone.0189257
He, X., Zeng, Q., Puthiyakunnon, S., Zeng, Z., Yang, W., Qiu, J… Cao H…(2017). Lactobacillus rhamnosus GG [ATCC 53103] supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense. Sci Rep, 7, 43305. Article
Howarth, G., & Wang, H. (2013). Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients, 5(1), 58-81. Article
Johnston, B. C., Ma, S. S., Goldenberg, J. Z., Thorlund, K., Vandvik, P. O., Loeb, M., & Guyatt, G. H. (2012). Probiotics for the prevention of Clostridium difficile–associated diarrhea: a systematic review and meta-analysis. Annals of internal medicine, 157(12), 878-888. Article
Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., & Kimura, I. (2015). Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 7(4), 2839-2849. Article
Kikuchi, Y., Kunitoh-Asari, A., Hayakawa, K., Imai, S., Kasuya, K., Abe, K., … & Hachimura, S. (2014). Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice. PloS one, 9(1), e86416. Article
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345. Article
Kolling, G. L., Wu, M., Warren, C. A., Durmaz, E., Klaenhammer, T. R., & Guerrant, R. L. (2012). Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro Toxin A production. Gut Microbes, 3(6), 523-529. https://doi.org/10.4161/gmic.21757
Krautkramer KA, Rey FE, Denu JM. (2017). Chemical signaling between gut microbiota and host chromatin: What is your gut really saying? J Biol Chem, 292(21):8582-8593. DOI:10.1074/jbc.R116.761577
Krautkramer, K. A., Kreznar, J. H., Romano, K. A., Vivas, E. I., Barrett-Wilt, G. A., Rabaglia, M. E., … & Denu, J. M. (2016). Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Molecular cell, 64(5), 982-992. Article
Lazar, V., Miyazaki, Y., Hanawa, T., Chifiriuc, M. C., Ditu, L. M., Marutescu, L., … & Kamiya, S. (2009). The influence of some probiotic supernatants on the growth and virulence features expression of several selected enteroaggregative E. coli clinical strains. Roum Arch Microbiol Immunol, 68(4), 207-214. Article
Leite, A. Z., Rodrigues, N. D. C., Gonzaga, M. I., Paiolo, J. C. C., de Souza, C. A., Stefanutto, N. A. V., … & Mariano, V. S. (2017). Detection of increased plasma interleukin-6 levels and prevalence of Prevotella copri and Bacteroides vulgatus in the feces of type 2 diabetes patients. Frontiers in immunology, 8, 1107. Article
Louis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661. Abstract
Mischke, M., & Plösch, T. (2016). The gut microbiota and their metabolites: potential implications for the host epigenome. In Microbiota of the Human Body (pp. 33-44). Springer, Cham. Abstract
Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 1223813. Abstract
O’Connor, P. M., O’Shea, E. F., Cotter, P. D., Hill, C., & Ross, R. P. (2018). The potency of the broad spectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Scientific reports, 8(1), 11833. Article
Sánchez, B., Delgado, S., Blanco‐Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular nutrition & food research, 61(1), 1600240. Article
Stecher, B. (2015). The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. In Metabolism and Bacterial Pathogenesis (pp. 297-320). American Society of Microbiology. Chapter14
Sun, L., Ma, L., Ma, Y., Zhang, F., Zhao, C., & Nie, Y. (2018). Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein & cell, 9(5), 397-403. Article
Villena, J., & Kitazawa, H. (2017). immunobiotics—interactions of Beneficial Microbes with the immune System. Frontiers in immunology, 8, 1580. Article
Villena, J., Vizoso-Pinto, M. G., & Kitazawa, H. (2016). Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection. Frontiers in immunology, 7, 563. Article
Woo, V., & Alenghat, T. (2017). Host–microbiota interactions: epigenomic regulation. Current opinion in immunology, 44, 52-60. Abstract
Yang, C. M., Cao, G. T., Ferket, P. R., Liu, T. T., Zhou, L., Zhang, L., … & Chen, A. G. (2012). Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poultry Science, 91(9), 2121-2129. Article
Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in microbiology, 5, 241. Article
Post Antibiotic Care: Antimicrobial & Calming Properties
Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied microbiology and biotechnology, 100(7), 2939-2951. Abstract
Amalaradjou, M.A., & Bhunia, A.K. (2012). Modern approaches in probiotics research to control foodborne pathogens. Adv. Food Nutr. Res, 67, 185–239. https://doi.org/10.1016/B978-0-12-394598-3.00005-8
Anzaku, A. A., & Pedro, A. (2017). Antimicrobial Effect of Probiotic Lactobacilli on Candida Spp. Isolated from Oral Thrush of AIDS Defining Ill Patients. J Prob Health, 5(171), 2. Article
Arena, M. P., Capozzi, V., Russo, P., Drider, D., Spano, G., & Fiocco, D. (2018). Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Applied microbiology and biotechnology, 102(23), 9949-9958. Abstract
Ayala, G., Escobedo-Hinojosa, W. I., de la Cruz-Herrera, C. F., & Romero, I. (2014). Exploring alternative treatments for Helicobacter pylori infection. World journal of gastroenterology: WJG, 20(6), 1450. Article
Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2), 160-174. Article
Blaabjerg, S., Artzi, D. M., & Aabenhus, R. (2017). Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients—A Systematic Review and Meta-Analysis. Antibiotics, 6(4), 21. Article
Buford, T. W. (2017). (Dis) Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome, 5(1), 80. https://doi.org/10.1186/s40168-017-0296-0
Chenoll, E., Casinos, B., Bataller, E., Astals, P., Echevarría, J., Iglesias, J. R., … & Genovés, S. (2011). Novel probiotic Bifidobacterium bifidum CECT 7366 strain active against the pathogenic bacterium Helicobacter pylori. Applied and environmental microbiology, 77(4), 1335-1343. Abstract
Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins—a viable alternative to antibiotics?. Nature Reviews Microbiology, 11(2), 95. Abstract
Cotter, P. D., Hill, C., & Ross, R. P. (2005). Food microbiology: bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777. Abstract
Goldenberg, J. Z., Ma, S. S., Saxton, J. D., Martzen, M. R., Vandvik, P. O., Thorlund, K., … & Johnston, B. C. (2013). Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children. Cochrane Database of Systematic Reviews, (5). Abstract
Johnston, B. C., Goldenberg, J. Z., Vandvik, P. O., Sun, X., & Guyatt, G. H. (2011). Probiotics for the prevention of pediatric antibiotic‐associated diarrhea. Cochrane Database of Systematic Reviews, (11). Abstract
Junjua, M., Kechaou, N., Chain, F., Awussi, A. A., Roussel, Y., Perrin, C., … & Chatel, J. M. (2016). A large scale in vitro screening of Streptococcus thermophilus strains revealed strains with a high anti-inflammatory potential. LWT-Food Science and Technology, 70, 78-87. https://doi.org/10.1016/j.lwt.2016.02.006
Manzoni, P., Mostert, M., Leonessa, M. L., Priolo, C., Farina, D., Monetti, C., … & Gomirato, G. (2006). Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. Clinical infectious diseases, 42(12), 1735-1742. Article
O’Connor, P. M., O’Shea, E. F., Cotter, P. D., Hill, C., & Ross, R. P. (2018). The potency of the broad spectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Scientific reports, 8(1), 11833. Article
Patel, A., Shah, N., & Prajapati, J. B. (2014). Clinical application of probiotics in the treatment of Helicobacter pylori infection—a brief review. Journal of Microbiology, Immunology and Infection, 47(5), 429-437. Article
Parker, R. B. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health, 29, 4-8.
Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10(suppl_1), S49-S66. Abstract
Reid, G., & Burton, J. (2002). Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes and infection, 4(3), 319-324. https://doi.org/10.1016/S1286-4579(02)01544-7
Rhoads, J. M., Collins, J., Fatheree, N. Y., Hashmi, S. S., Taylor, C. M., Luo, M., … & Liu, Y. (2018). Infant Colic Represents Gut Inflammation and Dysbiosis. The Journal of pediatrics. https://doi.org/10.1016/j.jpeds.2018.07.042
Szajewska, H., Konarska, Z., & Kołodziej, M. (2016). Probiotic bacterial and fungal strains: claims with evidence. Digestive Diseases, 34(3), 251-259. https://doi.org/10.1159/000443359
Todorov, S. D., de Melo Franco, B. D. G., & Tagg, J. R. (2019). Bacteriocins of Gram-positive bacteria having activity spectra extending beyond closely-related species. Beneficial microbes, 1-14. Abstract
Vanderpool, C., Yan, F., & Polk, B. D. (2008). Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflammatory bowel diseases, 14(11), 1585-1596. https://doi.org/10.1002/ibd.20525
Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in microbiology, 5, 241. Article
Yang, C. M., Cao, G. T., Ferket, P. R., Liu, T. T., Zhou, L., Zhang, L., … & Chen, A. G. (2012). Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poultry Science, 91(9), 2121-2129. Article
Yin, X., Lee, B., Zaragoza, J., & Marco, M. L. (2017). Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific reports, 7(1), 7267. Article
Zelaya, H., Alvarez, S., Kitazawa, H., & Villena, J. (2016). Respiratory antiviral immunity and immunobiotics: beneficial effects on inflammation-coagulation interaction during influenza virus infection. Frontiers in immunology, 7, 633. Article
Immune Support
AFRC, R. F. (1989). Probiotics in man and animals. Journal of applied bacteriology, 66(5), 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
Aguilar, C., Mano, M., & Eulalio, A. (2018). MicroRNAs at the Host–Bacteria Interface: Host Defense or Bacterial Offense. Trends in microbiology. Abstract
Azcarate-Peril, M.A., Sikes, M., Bruno-Barcena, J.M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol, 301, G401-G424. doi:10.1152/ajpgi.00110.2011.
Bocci V. (1992). The neglected organ: Bacterial flora has a crucial immunostimulatory role. Perspectives in Biology and Medince, 35(2), 251–260. Abstract
Cianci, R., Franza, L., Schinzari, G., Rossi, E., Ianiro, G., Tortora, G., … & Cammarota, G. (2019). The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. International journal of molecular sciences, 20(3), 501. Abstract
Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T., & Apostolopoulos, V. (2018). Immunomodulatory effects of Streptococcus thermophilus on U937 monocyte cell cultures. Journal of Functional Foods, 49, 241-249. https://doi.org/10.1016/j.jff.2018.08.038
Galdeano, C. M., Cazorla, S. I., Dumit, J. M. L., Vélez, E., & Perdigón, G. (2019). Beneficial Effects of Probiotic Consumption on the Immune System. Annals of Nutrition and Metabolism, 74(2), 115-124. Abstract
Gern, J.E. (2015). Promising candidates for allergy prevention. Journal of Allergy and Clinical Immunology, 136 (1), 23–28. Abstract
Harata, G., He, F., Takahashi, K., Hosono, A., Miyazawa, K., Yoda, K., … & Kaminogawa, S. (2016). Human Lactobacillus strains from the intestine can suppress IgE-mediated degranulation of rat basophilic leukaemia (RBL-2H3) cells. Microorganisms, 4(4), 40. doi:10.3390/microorganisms4040040
Lecellier, C. H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., … & Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science, 308(5721), 557-560. Article
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147(3659), 747-748. https://doi.org/10.1126/science.147.3659.747
Ma, F., Xu, S., Liu, X., Zhang, Q., Xu, X., Liu, M., … & Cao, X. (2011). The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nature immunology, 12(9), 861. Abstract
Madsen, K. (2006). Probiotics and the immune response. J Clin Gastroenterol, 40, 232–4. Abstract
Marshall, W.E. (2014). Bacterial ORNs, a new paradigm to prevent infection. In Weston A. Price Foundation, online Article.
Marshall, W. E. (2010). Oligoribonucleotides alert the immune system of animals to the imminence of microbial infection. U.S. Patent No. 7,678,557. Washington, DC: U.S. Patent and Trademark Office. Article
Nakata, K., Sugi, Y., Narabayashi, H., Kobayakawa, T., Nakanishi, Y., Tsuda, M., … & Takahashi, K. (2017). Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. Journal of Biological Chemistry, 292(37), 15426-15433. Abstract
Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms, 4(3), 34. Abstract
Parker, R. B. (1974). Probiotics, the other half of the antibiotic story. Anim Nutr Health, 29, 4-8.
Parvez, S., Malik, K.A., Kang, S., & Kim, H.Y. (2006). Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 100, 1171–85. Article
Roberfroid, M.B. (2000). Prebiotics and probiotics: Are they functional foods? Am J Clin Nutr, 71, 1682S–7S. Article
Saini, R., Saini, S., Sugandha. (2009). Probiotics: The health boosters. J Cutan Aesthet Surg, 2, 112. Letter
Salas-Jara, M. J., Ilabaca, A., Vega, M., & García, A. (2016). Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms, 4(3), 35. doi:10.3390/microorganisms403003
Shmaryahu, A., Carrasco, M., & Valenzuela, P. D. (2014). Prediction of bacterial microRNAs and possible targets in human cell transcriptome. Journal of Microbiology, 52(6), 482-489. Abstract
Staedel, C., & Darfeuille, F. (2013). Micro RNA s and bacterial infection. Cellular microbiology, 15(9), 1496-1507. Abstract
Sunkavalli, U., Aguilar, C., Silva, R. J., Sharan, M., Cruz, A. R., Tawk, C., … & Eulalio, A. (2017). Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS pathogens, 13(4), e1006327. Abstract
Wahid, F., Shehzad, A., Khan, T., & Kim, Y. Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1803(11), 1231-1243. https://doi.org/10.1016/j.bbamcr.2010.06.01
Zhao, Y., & Lukiw, W. J. (2018). Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer’s disease. Frontiers in neurology, 9, 145. Article
IBS: Inflammatory Bowel Support
Balakrishnan, M., & Floch, M. H. (2012). Prebiotics, probiotics and digestive health. Current Opinion in Clinical Nutrition & Metabolic Care, 15(6), 580-585. Abstract
Dimidi, E., Christodoulides, S., Scott, S. M., & Whelan, K. (2017). Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Advances in Nutrition, 8(3), 484-494. Article
Distrutti, E., Monaldi, L., Ricci, P., & Fiorucci, S. (2016). Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World journal of gastroenterology, 22(7), 2219. Article
Ghouri, Y. A., Richards, D. M., Rahimi, E. F., Krill, J. T., Jelinek, K. A., & DuPont, A. W. (2014). Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clinical and experimental gastroenterology, 7, 473. Article
Lin, P.W., Myers, L.E., Ray, L., Song, S.C., Nasr, T.R., Berardinelli, A.J., Kundu, K., Murthy, N., Hansen, J.M., & Neish A.S. (2009). Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic. Biol. Med, 47, 1205–1211. doi: 10.1016/j.freeradbiomed.2009.07.033.
Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F., & Becker, C. (2017). Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cellular and Molecular Gastroenterology and Hepatology, 4(1), 33-46. Article
Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(suppl_2), S108-S121. https://doi.org/10.1093/cid/civ177
Pedersen, G. (2000). Development, validation and implementation of an in vitro model for the study of metabolic and im-mune function in normal and inflamed human co-lonic epithelium. Autoimmunity, 32, 255-263. Article
Vanderpool, C., Yan, F., & Polk, B. D. (2008). Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflammatory bowel diseases, 14(11), 1585-1596. https://doi.org/10.1002/ibd.20525
Vitetta, L., Briskey, D., Alford, H., Hall, S., & Coulson S. (2014). Probiotics, prebiotics and the gastrointestinal tract in health and disease. Inflammopharmacology, DOI: 10.1007/s10787-014-0201-4. Article
Wasilewski, A., Zielińska, M., Storr, M., & Fichna, J. (2015). Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflammatory bowel diseases, 21(7), 1674-1682. Abstract
Zhang, Y., Li, L., Guo, C., Mu, D., Feng, B., Zuo, X., & Li, Y. (2016). Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. BMC gastroenterology, 16(1), 62. Abstract
Modulating a Healthy Microbiome: Immunity, Intestinal Barrier & Brain
Arora, T., & Bäckhed, F. (2016). The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of internal medicine, 280(4), 339-349. Article
Blackwood, B. P., Yuan, C. Y., Wood, D. R., Nicolas, J. D., Grothaus, J. S., & Hunter, C. J. (2017). Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. Journal of probiotics & health, 5(1). Article
Bosscher, D., Breynaert, A., Pieters, L., & Hermans, N. (2009). Food-based strategies to modulate the composition of the microbiota and their associated health effects. Journal of physiology and pharmacology/Polish Physiological Society.-Kraków, 1991, currens, 60(S: 6), 5-11. Article
Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., … & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 117(1), 93-107. Abstract
Cani PD, Delzenne NM. (2011).The gut microbiome as therapeutic target. Pharmacol Ther, 130(2), 202-12.DOI: 10.1016/j.pharmthera.2011.01.012
Choudhury, T. G., & Kamilya, D. (2018). Paraprobiotics: an aquaculture perspective. Reviews in Aquaculture. Abstract
de Vos, P., Mujagic, Z., de Haan, B. J., Siezen, R. J., Bron, P. A., Meijerink, M., … & Troost, F. J. (2017). Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Frontiers in Immunology, 8, 1000. DOI:
10.3389/fimmu.2017.01000
De Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol, 111, 1–66. Abstract
Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of physiology, 595(2), 489-503. Article
Gibson, G.R., Probert, H.M., van Loo, J.A.E., & Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev, 17, 257–259. Abstract
Gibson, G.R., & Roberfroid, M.B. (1995). Dietary modulation of the colonic microbiota: Introducing the concept of prebiotics. J. Nutr, 125, 1401–1412. Abstract
Hu, S., Wang, L., & Jiang, Z. (2017). Dietary Additive Probiotics Modulation of the Intestinal Microbiota. Protein and peptide letters, 24(5), 382-387. DOI:10.2174/0929866524666170223143615
Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition, 2013. http://dx.doi.org/10.5402/2013/481651
Macfarlane, S. M. G. T., Macfarlane, G. T., & Cummings, J. T. (2006). Prebiotics in the gastrointestinal tract. Alimentary pharmacology & therapeutics, 24(5), 701-714. Article
Maguire, M., & Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences, 30(2), 179-201. Article
Manzoni, P., Mostert, M., Leonessa, M. L., Priolo, C., Farina, D., Monetti, C., … & Gomirato, G. (2006). Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. Clinical infectious diseases, 42(12), 1735-1742. Article
Mujagic, Z., De Vos, P., Boekschoten, M. V., Govers, C., Pieters, H. J. H., De Wit, N. J., … & Troost, F. J. (2017). The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Scientific reports, 7, 40128. DOI:10.1038/srep40128
Nishiyama, K., Sugiyama, M., & Mukai, T. (2016). Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms, 4(3), 34. Abstract
Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(suppl_2), S108-S121. Abstract
Roberfroid M. (2007). Prebiotics: The concept revisited. J. Nutr, 137, 830–837. Article
Roberfroid, M. B. (2002). Functional foods: concepts and application to inulin and oligofructose. British Journal of Nutrition, 87(S2), S139-S143. https://doi.org/10.1079/BJN/2002529
Sirisinha, S. (2016). The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pac J Allergy Immunol, 34(4), 249-264. Article
Thomas, L. V., Suzuki, K., & Zhao, J. (2015). Probiotics: a proactive approach to health. A symposium report. British Journal of Nutrition, 114(S1), S1-S15. Abstract
Tufarelli, V., & Laudadio, V. (2016). An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics. J Exp Bioland Agric Sci, 4(3), 273-8. Article
Tsilingiri, K., & Rescigno, M. (2012). Postbiotics: what else?. Beneficial microbes, 4(1), 101-107. Abstract
Vitetta L., Sali A. (2008). Probiotics, prebiotics and gastrointestinal health. Med. Today, 9, 65–70. Article
Yin, X., Lee, B., Zaragoza, J., & Marco, M. L. (2017). Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific reports, 7(1), 7267. Abstract
Babies and Young Children’s Microbiome
Amenyogbe, N., Kollmann, T. R., & Ben-Othman, R. (2017). Early-life host–microbiome interphase: the key frontier for immune development. Frontiers in pediatrics, 5, 111. DOI:10.3389/fped.2017.00111
Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T., & Gordon, J. I. (2016). Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science, 352(6293), 1533-1533. DOI: 10.1126/science.aad9359
Cox, M. J., Huang, Y. J., Fujimura, K. E., Liu, J. T., McKean, M., Boushey, H. A., … & Lynch, S. V. (2010). Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS One, 5(1), e8745. Article
Emami, C. N., Petrosyan, M., Giuliani, S., Williams, M., Hunter, C., Prasadarao, N. V., & Ford, H. R. (2009). Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surgical infections, 10(5), 407-417. Abstract
Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic‐associated diarrhea. The Cochrane Library. Abstract
Hodzic, Z., Bolock, A. M., & Good, M. (2017). The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis. Frontiers in pediatrics, 5, 40.Article
Hayes, S. R., & Vargas, A. J. (2016). Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore: The Journal of Science and Healing, 12(6), 463-466. https://doi.org/10.1016/j.explore.2016.08.015
Kang, D. W., Ilhan, Z. E., Isern, N. G., Hoyt, D. W., Howsmon, D. P., Shaffer, M., … & Krajmalnik-Brown, R. (2018). Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe, 49, 121-131. Article
Patel, R.M., & Denning, P.W. (2013). Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin Perinatol, 40(1), 11-25. Article
Shankar, V., Gouda, M., Moncivaiz, J., Gordon, A., Reo, N. V., Hussein, L., & Paliy, O. (2017). Differences in gut metabolites and microbial composition and functions between Egyptian and US children are consistent with their diets. Msystems, 2(1), e00169-16. Article
Subramanian, S., Huq, S., Yatsunenko, T., Haque, R., Mahfuz, M., Alam, M. A., … & Barratt, M. J. (2014). Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature, 510(7505), 417. Abstract
Wegh, C. A., Schoterman, M. H., Vaughan, E. E., Belzer, C., & Benninga, M. A. (2017). The effect of fiber and prebiotics on children’s gastrointestinal disorders and microbiome. Expert review of gastroenterology & hepatology, 11(11), 1031-1045. https://doi.org/10.1080/17474124.2017.1359539
Zhang, M., Ma, W., Zhang, J., He, Y., & Wang, J. (2018). Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Scientific reports, 8(1), 13981. Article
Metabolic Support: Cardiovascular, Diabetes, Cancer, and Weight
Cani, P.D., Pssemiers, S., Van de Wiele, T., Guiot, Y., Everad, A., Rottier, O…. Delzenne, N.M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. Gut, 58(8), 1091-1103. DOI:10.1136/gut.2008.165886
Cani, P. D. (2019). Severe obesity and gut microbiota: does bariatric surgery really reset the system?. Gut, 68(1), 5-6. Abstract
Cani, P. D., & Delzenne, N. M. (2009). The role of the gut microbiota in energy metabolism and metabolic disease. Current pharmaceutical design, 15(13), 1546-1558. Article
Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes, 57(6), 1470-1481. Article
Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., … & Waget, A. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772. Article
Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., … & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11), 2374-2383. Article
Druat, C., Alligier, M., Salazar, N., Neyrinck, A.M., & Delzenne, N.M. (2014). Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nur, 5(5), 624S-633S. DOI:10.3945/an.114.005835
Everard, A., & Cani, P. (2013). Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol, 27, 73–83. Article
Falcinelli, S., Rodiles, A., Hatef, A., Picchietti, S., Cossignani, L., Merrifield, D. L., … & Carnevali, O. (2017). Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish. Scientific reports, 7(1), 5512. Article
Frazier, T. H., DiBaise, J. K., & McClain, C. J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parenteral and Enteral Nutrition, 35(5_suppl), 14S-20S. Article
Han, J. L., & Lin, H. L. (2014). Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World journal of gastroenterology: WJG, 20(47), 17737. Article
Korkmaz, O. A., Sadi, G., Kocabas, A., Yildirim, O. G., Sumlu, E., Koca, H. B., … & Bilgehan, M. Lactobacillus helveticus and Lactobacillus plantarum modulate renal antioxidant status in a rat model of fructose-induced metabolic syndrome. Article
Macfarlane, S., Cleary, S., Bahrami, B., Reynolds, N., & Macfarlane, G. T. (2013). Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double‐blind, placebo‐controlled crossover study. Alimentary pharmacology & therapeutics, 38(7), 804-816. Article
Marques, F. Z., Mackay, C. R., & Kaye, D. M. (2018). Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology, 15(1), 20. Article
Qin, Y., Roberts, J. D., Grimm, S. A., Lih, F. B., Deterding, L. J., Li, R., … & Wade, P. A. (2018). An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome biology, 19(1), 7. Article
Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., … & Guarner, F. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1-S63. Abstract
Serino, M., Blasco-Baque, V., Nicolas, S., & Burcelin, R. (2014). Managing the manager: gut microbes, stem cells and metabolism. Diabetes & metabolism, 40(3), 186-190. Abstract
Yan Q, Li X, Feng B. (2015). The efficacy and safety of probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: study protocol for a randomized, double-blinded, placebo controlled trial of the Probiotics Prevention Diabetes Programme (PPDP). BMC Endocr Discord; 15(1): 74. Article
Cardiovascular and Fatty Liver Support
Álvarez-Mercado, A. I., Navarro-Oliveros, M., Robles-Sánchez, C., Plaza-Díaz, J., Sáez-Lara, M. J., Muñoz-Quezada, S., … & Abadía-Molina, F. (2019). Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms, 7(3), 68. Article
Delzenne, N. M., Knudsen, C., Beaumont, M., Rodriguez, J., Neyrinck, A. M., & Bindels, L. B. (2019). Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut–liver axis. Proceedings of the Nutrition Society, 1-10. Abstract
Fernandes, R., do Rosario, V. A., Mocellin, M. C., Kuntz, M. G., & Trindade, E. B. (2017). Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: A systematic review. Clinical Nutrition, 36(5), 1197-1206. Abstract
Iacono, A., Raso, G. M., Canani, R. B., Calignano, A., & Meli, R. (2011). Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. The Journal of nutritional biochemistry, 22(8), 699-711. Article
Johnson-Henry et al. (2008). Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli 0157:H7- Induced changes in epithelial barrier function. Infect Immun; 76:1340-1348. Abstract
Lee et al. (2006). Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta; 1761: 736-744. Article
Safari, Z., & Gérard, P. (2019). The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 1-18. Abstract
Shalitin, S., Battelino, T., & Moreno, L. A. (2019). Obesity, Metabolic Syndrome and Nutrition. Nutrition and Growth: Yearbook 2019, 119, 13-42. Chapter
Wang et al. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol; 84: 341-347. Abstract
Yadav et al. (2007). Antidiabetic effect of probiotic dahl containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition; 23: 62-68. Article
Yari, Z., & Hekmatdoost, A. (2019). Dietary Interventions in Fatty Liver. In Dietary Interventions in Gastrointestinal Diseases (pp. 245-255). Academic Press. Abstract
The Microbiome & Support During Cancer
Alexander, J. L., Kohoutova, D., & Powell, N. (2019). Science in Focus: The Microbiome and Cancer Therapy. Clinical Oncology, 31(1), 1-4. Abstract
Arora, M., Baldi, A., Kapila, N., Bhandari, S., & Jeet, K. (2019). Impact of Probiotics and Prebiotics on Colon Cancer: Mechanistic Insights and Future Approaches. Current Cancer Therapy Reviews, 15(1), 27-36. Article
Banerjee, S., & Robertson, E. S. (2019). Future Perspectives: Microbiome, Cancer and Therapeutic Promise. In Microbiome and Cancer (pp. 363-389). Humana Press, Cham. Abstract
Belcheva, A., Irrazabal, T., & Martin, A. (2015). Gut microbial metabolism and colon cancer: can manipulations of the microbiota be useful in the management of gastrointestinal health?. Bioessays, 37(4), 403-412. Abstract
Buford, T. W. (2017). (Dis) Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome, 5(1), 80. Article
Chen, B., Du, G., Guo, J., & Zhang, Y. (2019). Bugs, drugs, and cancer: can the microbiome be a potential therapeutic target for cancer management?. Drug discovery today. Article
De Almeida, C. V., de Camargo, M. R., Russo, E., & Amedei, A. (2019). Role of diet and gut microbiota on colorectal cancer immunomodulation. World journal of gastroenterology, 25(2), 151. Article
Dewar, M., Izawa, J., Li, F., Chanyi, R. M., Reid, G., & Burton, J. P. (2018). Microbiome.In Bladder Cancer (pp. 615-628). Academic Press. Chapter32
Drago, L. (2019). Probiotics and Colon Cancer. Microorganisms, 7(3), 66. Article
Femia, A. P., Luceri, C., Dolara, P., Giannini, A., Biggeri, A., Salvadori, M., … & Caderni, G. (2002). Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats. Carcinogenesis, 23(11), 1953-1960. Article
Han, C. Dai, Y.Q., Hua, Z-C., Fu, G.F., Yin, Y., Hu, B., & Xu, G.X. (2019). Bifidobacterium as a delivery system of functional genes for cancer therapy. In A.M. Chakrabarty & A.M. Fialho (Eds.), Microbial infections and cancer therapy (pp. 1-32). Singapore: Pan Stanford Publishing Pte. Ltd. Chapter1
Helmink, B. A., Khan, M. W., Hermann, A., Gopalakrishnan, V., & Wargo, J. A. (2019). The microbiome, cancer, and cancer therapy. Nature medicine, 1. Article
Hibberd, A. A., Lyra, A., Ouwehand, A. C., Rolny, P., Lindegren, H., Cedgård, L., & Wettergren, Y. (2017). Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ open gastroenterology, 4(1), e000145. Abstract
Li, W., Deng, Y., Chu, Q., & Zhang, P. (2019). Gut microbiome and cancer immunotherapy. Cancer letters. Article
Liong, M. T. (2008). Roles of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in-vivo evidence. International journal of molecular sciences, 9(5), 854-863. Abstract
Mazraeh, R., Azizi-Soleiman, F., Jazayeri, S. M. H. M., & Noori, S. M. A. (2019). Effect of inulin-type fructans in patients undergoing cancer treatments: A systematic review. Pakistan Journal of Medical Sciences, 35(2). Abstract
Nicoletti, A., Pompili, M., Gasbarrini, A., & Ponziani, F. R. (2019). Going with the gut: probiotics as a novel therapy for hepatocellular carcinoma. Hepatobiliary Surgery and Nutrition. Editorial
Raza, M. H., Gul, K., Arshad, A., Riaz, N., Waheed, U., Rauf, A., … & Arshad, M. (2019). Microbiota in cancer development and treatment. Journal of cancer research and clinical oncology, 145(1), 49-63. Abstract
Sharma, A. (2019). Importance of Probiotics in Cancer Prevention and Treatment. In Recent Developments in Applied Microbiology and Biochemistry (pp. 33-45). Academic Press. Abstract
Sethi, V., Vitiello,
Reviews
There are no reviews yet.